I B.Tech - II Semester – Supplementary Examinations DECEMBER 2024

DIFFERENTIAL EQUATIONS & VECTOR CALCULUS (Common for ALL BRANCHES)

Duration: 3 hours

Max. Marks: 70

Note: 1. This question paper contains two Parts A and B.

- 2. Part-A contains 10 short answer questions. Each Question carries 2 Marks.
- 3. Part-B contains 5 essay questions with an internal choice from each unit. Each Question carries 10 marks.
- 4. All parts of Question paper must be answered in one place.

1.a)	Find the Integrating factor of $(x+1)\frac{dy}{dx} - y =$						
	$e^{3x}(x+1)^2$.						
1.b)	Explain Newton's law of cooling.						
1.c)	Obtain differential equation to L-C-R circuit.						
1.d)	Find the general solution of the differential equation						
	$(D^3 + D^2 + 4D + 4)y = 0$						
1.e)	Form a partial differential equation by eliminating the						
	arbitrary constants $2z = \frac{x^2}{a^2} + \frac{y^2}{b^2}$						
1.f)	Solve $\frac{\partial^3 z}{\partial x^3} - 4 \frac{\partial^3 z}{\partial x^2 \partial y} + 4 \frac{\partial^3 z}{\partial x \partial y^2} = 0$						
1.g)	Define divergence and curl of a vector point function.						
1.h)	Define solenoidal and irrotational vectors.						
1.i)	Find the area of a circle of radius 'a' using Green's						
	theorem.						

PART – A

1.j) Evaluate $\int_0^c \int_0^b \int_0^a (x+y+z) dx dy dz$

PART – B

			Max.						
			Marks						
		UNIT-I							
2	² a) Solve the differential equation $\frac{dy}{dx} + \frac{y}{x} = x^3 - 3$.								
	b)	A body kept in air with temperature 25°C, cools							
	from 140° c to 80° C in 20 minutes. Find when the								
	body cools down to 35° C.								
	<u> </u>	OR							
3	3 a) Determine the complete solution of the equation.								
	$(1-x^2)\frac{dy}{dx} - xy = 1$								
b) Solve the differential equation $(x^3 + y^3 + 1)dx + 1$									
	$xy^2dy = 0$								
		UNIT-II							
4	a)	Solve $y'' - 2y' + 2y = e^x cosx$							
	b) Determine the general solution to the equation								
	$D^2y + 3Dy + 2y = 4\cos^2 x$								
		OR							
5	a)	Solve $(D^2 + 4)y = tan2x$	5 M						
	b)	Find the Particular integral of $(D^2 + 2D + 1)y =$	5 M						
		xcosx							
	I	1	<u>I</u>						

		UNIT-III				
6	a)	Form a Partial differential equation by eliminating	5 M			
		the arbitrary functions from $z = f_1(y + 2x) + c_2(y + 2x)$				
		$f_2(y-3x)$				
	b)	Solve the PDE $(D^2 + 4DD' - 5D'^2)z = \sin(2x + 1)$	5 M			
		3y)				
		OR				
7	a)	Find the solution to the equation $(x^2 - y^2 - z^2)p + $				
		2xyq = 2xz				
	b)	Determine the general solution to the equation.	5 M			
		$p-q = \log (x+y).$				
		UNIT-IV				
8	a)	Determine the constants a, b, c so that the directional $\frac{1}{2}$	5 M			
		derivative of $P=axy^2+byz+cz^2x^3$ at (1,2,-1) has a				
		maximum magnitude 64 in the direction parallel to				
	1 \	the z-axis.	7.34			
	b)	Show that (i) $div(curl\vec{F}) = 0$ (ii) $\nabla\left(\frac{1}{r^2}\right) = -\frac{\overline{2r}}{r^4}$	5 M			
	1	OR				
9	a)	Find the directional derivative of \emptyset at the point	5 M			
		(1,-2,1) in the direction of the normal to the surface				
		$xy^2z = 3x + z^2$ where $\varphi = 2x^3y^2z^4$				
	b)	Find (i) <i>div(gradØ)</i> (ii) <i>grad(logr)</i>	5 M			
		TINIT /IN X 7				
10	``		<i>с</i> \ (
10	a)	Evaluate $\int_{S} \vec{F} ds$ where $\vec{F} = 4xi - 2y^2j + z^2k$	5 M			
		and 'S' is the surface bounding the region $x^2+y^2=4$,				
		z=0 and z=3				

	b) Evaluate $\iint (xdydz + ydzdx + zdxdy)$ over the							5 M		
	surface of a sphere of radius 'a'									
OR										
11	Ver	ify	Stoke	's th	eorem	for	the	vector	field	10 M
	$\overrightarrow{F} = (2x - y)i - yz^2j - y^2zk$ over the upper half									
	surface $x^2 + y^2 + z^2 = 1$ bounded by it's projection on									
	the	xy-p	lane							